Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array.
نویسندگان
چکیده
Despite the growing interest in selenium intervention of prostate cancer in humans, scanty information is currently available on the molecular mechanism of selenium action. Our past research indicated that methylseleninic acid (MSA) is an excellent reagent for investigating the anticancer effect of selenium in vitro. The present study was designed to examine the cellular and molecular effects of MSA in PC-3 human prostate cancer cells. After exposure to physiological concentrations of MSA, these cells exhibited a dose- and time-dependent inhibition of growth. MSA retarded cell cycle progression at multiple transition points without changing the proportion of cells in different phases of the cell cycle. Flow cytometric analysis of annexin V- and propidium iodide-labeled cells showed a marked induction of apoptosis by MSA. Array analysis with the Affymetrix human genome U95A chip was then applied to profile the gene expression changes that might mediate the effects of selenium. Gene profiling was done in a time course experiment (at 12, 24, 36, and 48 h) using synchronized cells. A large number of potential selenium-responsive genes with diverse biological functions were identified. These genes fell into 12 clusters of distinct kinetics pattern of modulation by MSA. The expression changes of 10 genes known to be critically involved in cell cycle regulation were selected for verification by Western analysis to determine the reliability of the array data. An agreement rate of 70% was obtained based on these confirmation experiments. The array data enabled us to focus on the role of potential key genes (e.g., GADD153, CHK2, p21(WAF1), cyclin A, CDK1, and DHFR) that might be targets of MSA in impeding cell cycle progression. The data also provide valuable insights into novel biological effects of selenium, such as inhibition of cell invasion, DNA repair, and stimulation of transforming growth factor beta signaling. The present study demonstrates the utility of a genome-wide analysis to elucidate the mechanism of selenium chemoprevention.
منابع مشابه
Synergistic effect of Achillea millefolium L. combined with bleomycin on prostate cancer cell
Background: The aim of this study was to investigate the effect of methanolic extract of Achillea millefolium L. (MEA) on the antiproliferative activity of bleomycin on human prostate cancer and normal skin cells. Materials and Methods: Human prostate cancer cell (DU-145) and human non-malignant fibroblast cell (HFFF2) were treated with MEA at various concentrations ( 20, 100, 500, 1000 and ...
متن کاملQuercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
Objective(s):The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its ...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملEffects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells.
Combination of chemopreventive agents with distinct molecular mechanisms is considered to offer a potential for enhancing cancer prevention efficacy while minimizing toxicity. Here we report two chemopreventive agents, selenite and genistein, that have synergistic effects on apoptosis, cell cycle arrest, and associated signaling pathways in p53-expressing LNCaP and p53-null PC3 prostate cancer ...
متن کاملAnticancer Activity of Curcumin-Loaded PLGA Nanoparticles on PC3 Prostate Cancer Cells
Curcumin (Cur) has been found to be very efficacious against many different types of cancercells. However, the major disadvantage associated with the use of Cur is its low systemicbioavailability. Our present work investigated the toxic effect of encapsulation of Cur in PLGA(poly lactic-coglycolic acid) nanospheres (NCur) on PC3 human cancer prostate cell. In thepresent study, we have investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2003